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The Tollmien-Schlichting waves appearing as a result of instability of laminar flows 
develop a three-dimensional configuration as the amplitude becomes large enough. 
A new explanation of this experimentally observed phenomenon is attempted on the 
basis of a resonance theory. It is shown that the existence of two-dimensional waves 
with finite amplitude can induce three-dimensional distortion with spanwise 
periodicity of the mean-flow field. Under a certain condition for resonance, the 
distortion grows, in proportion to the product of time and an exponential function 
of time, up to quite a large magnitude, and consequently interacts with the 
Tollmien-Schlichting waves to yield new three-dimensional travelling waves with the 
same streamwise wavenumber as the two-dimensional waves, and with the same 
spanwise wavenumber as the mean flow. The resulting flow field is of the peak- 
valley-splitting type, as observed often in experiments. The growth rate of the 
three-dimensional part in the mean flow depends significantly upon values of the 
spanwise wavenumber, suggesting that there is a preferred range of spanwise 
periodicity in the three-dimensional development of unstable laminar flows. 

1. Introduction 
The transition from laminar flow to turbulence in two-dimensional flows, such as 

the Blasius boundary layer and plane Poiseuille flow, begins with the evolution of 
two-dimensional travelling waves, namely Tollmien-Schlichting waves, when natu- 
rally existing disturbances are sufficiently small, or when weak two-dimensional 
excitation is introduced through the vibrating-ribbon technique. These waves grow 
during propagation in the downstream direction and, after achieving a certain 
magnitude, develop a three-dimensional configuration with periodicity in the span- 
wise direction. It is widely recognized that this spanwise inhomogeneity is indis- 
pensable for the subsequent process of transition to turbulence. Thus the mechanics 
leading to three-dimensionalization of Tollmien-Schlichting waves has been one of 
the most important subjects to arise in stability and transition research. An excellent 
review of this subject is given by Herbert & Morkovin (1980) (see also Herbert 
1984 a). 

As seen in the experiments by Klebanoff, Tidstrom & Sargent (1962), the wave 
disturbances exhibit clear three-dimensionality after their growth rate separates from 
the prediction of linear stability theory, suggesting that the distortion is mainly due 
to nonlinear effects of finite-amplitude disturbances (Tani 1969). The first attempt 
to describe the spanwise-periodic configuration on the basis of nonlinear theory was 
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made by Benney & Lin (1960), but their theory is concerned only with the mean-flow 
field induced by interaction between two- and three-dimensional waves existing 
beforehand. For the purpose of seeking an origin of the three-dimensionality, the 
work of Stuart (1962) seems to be more important. He extended the weakly nonlinear 
stability theory of Stuart (1960) and Watson (1960) to describe interactions of two- 
and three-dimensional travelling waves, and derived the amplitude equations 
governing nonlinear growth of the two waves. If the amplitude of three-dimensional 
waves is taken sufficiently small, his theory is usable for the present purpose. Some 
important aspects of such disturbances were revealed by Itoh (1980) through 
numerical evaluation of various coefficients of the amplitude equations. 

In the above formulation, the two- and three-dimensional waves are assumed to 
have the same wavenumber in the streamwise direction. Since linear stability theory 
gives different values of phase velocity for the two waves, no resonance between them 
can occur, at least in the lowest-order approximation, in contradiction to 
experimental observations. In such circumstances, Craik (1971) directed his attention 
to three-dimensional waves with a streamwise wavenumber just half of the two- 
dimensional one (see also Raetz 1959), and found that the waves with a particular 
spanwise wavenumber could have the same phase velocity as the two-dimensional 
one, resulting in a kind of resonance accompanied by strong growth of all the waves. 
The disturbances predicted by this theory comprise the so-called resonant triads, 
which were quite recently detected in experiments by Saric & Thomas (1984) and 
Kachanov & Levchenko (1984). 

Another theoretical study concerning this subject has been made recently by 
Herbert (1984a), who considered the time-periodic flow consisting of a steady laminar 
flow plus two-dimensional waves with finite and equilibrium amplitude, and revealed 
its instability to infinitesimal three-dimensional disturbances with spanwise wave- 
number over a rather wide range. His analysis is novel in that the disturbances 
considered include a number of components in the streamwise Fourier expansion. 

The present paper aims at  proposing a possible solution to the problem of 
three-dimensionalization. First, a general formulation of the problem is given, 
followed by a more detailed discussion of the three theories introduced above to 
clarify our present state of understanding about the problem. In $4, a mathematical 
identification is made of various kinds of resonance in physically different situations, 
in relation to the motivation and basic idea of the present work. The last two sections 
are devoted to the description of a new theory of resonance in the mean-flow field 
and a discussion of the theoretical and numerical results. 

2. The fundamental equations 
For mathematical simplicity, we consider a flow of incompressible fluid between 

parallel planes, and let z denote the coordinate in the flow direction, y the spanwise 
coordinate and z the coordinate normal to the planes at z = f 1,  with u, v ,  w as 
corresponding velocity components (v in vector form), and t the time. Here all 
quantities have been made non-dimensional with the half-width h of the channel and 
the maximum velocity U, of the steady laminar flow (plane Poiseuille flow), so that 
the Reynolds number is defined as R = U,, h / v ,  u being the kinematic viscosity. 

The problem is to investigate stability of the basic flow consisting of the steady 
laminar flow V = (U, 0,O) plus the two-dimensional travelling waves I’ = ( l? ,O ,  T?) 
to some kinds of three-dimensional disturbances with velocity 6 = (&, 6, &). The basic 
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flow must satisfy the Navier-Stokes equations, and so the steady laminar part is 
given by U(z)  = 1 - z2, while the wave part is governed by the nonlinear equation 

where V2 = a2/as2 + a2/az2, ' = a/&, and the stream function Y(x, z, t )  has been 
introduced with the definition 

a y  v=---. ay o=- 
aZ ax 

The above equation admits a wave solution of the form 

where the real constants a and c, denote the wavenumber and phase velocity 
respectively, while the tilde indicates the complex conjugate. In the present for- 
mulation, the temporally dependent approach is used for mathematical convenience, 
and so the Fourier coefficients in the above are assumed to be functions of z and t ,  
although real waves observed in experiments seem to vary in the streamwise direc- 
tion. Substituting (2.3) into (2.1) and separating out every Fourier component, we ob- 
tain an infinite sequence of equations for Yk, with k = 0, & 1, f 2, . . . , as 

[If (Da-  k2a2) + ikac, (D2 - k2a2) + ikau"] Yk at 
Q) 

= z {ihDyk-z-i(k-z)a~t-,D} (D2-Z2a2) YZ, (2.4) 

where D = a/&. It is not easy to solve these partial differential equations simulta- 
neously, and therefore so far some approximate methods have been used. In general, 
the Fourier series is truncated at an appropriate term k = k K, and then the truncated 
system can be solved numerically if an appropriate initial condition is specified. In  
a particular case where the waves may be assumed to be in equilibrium, however, 
no initial conditions need to be specified and computations become much simpler 
because the equations reduce to  ordinary differential ones. On the other hand, if the 
waves are sufficiently small, i t  is possible to apply the weakly nonlinear approach, 
in which the Fourier coefficients are expanded into power series of a suitably defined 
amplitude. This last method has the advantage that the equations can be solved 
successively up to an arbitrary level of approximation, but has the great disadvantage 
that the radius of convergence of the series solution is very small (see Herbert 1980). 
Any of the three methods above may be used according to the purpose of the study, 
but great care should be taken that the approximation introduced at this stage does 
not induce any essential error in the final results of the calculations. 

We now proceed to derive the equations governing a small three-dimensional 
disturbance superimposed on the two-dimensional unsteady flow. We substitute 
u = V+ P+ 9 into the NavierStokes and continuity equations, subtract the basic- 
flow parts, and linearize the resultant equations with respect to 9. The disturbance 
is assumed to be periodic in both the streamwise and spanwise directions, so as to 
be expanded into the double Fourier series. Since the equations have been linearized, 
we may take only a single component of the y-Fourier series, although components 

Z--m 
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in the x-Fourier series should be retained in the way similar to the case of 
two-dimensional waves. Thus we put 

W \ 

W I 

where the real constant p denotes the wavenumber in the spanwise direction. These 
are substituted into the linear disturbance equations with pressure terms eliminated, 
and each Fourier component is separated out to yield 

[ {i (D2 - k2a2 -$) + ikac, at 1 (D2 - k2a2- /?2) + i k a r  wk 

+ ika(iZau,-, + wk-, D) DYJ, (2.6) 

{k (D2 - k2a2 -$) + ikac, - 
at 

- [ ika {i (D2- k2a2 -/P) + ikac, --- ikaU D +$u' wk 
at 1 

W 

= C [{ilUD!Pk-z-i(k-l)aYk-z D}{(kla2+$)uz-ikaDwz} 
,--a 

+)62(ilUUk-,+ Wk-2 D) Dul,], (2.7) 

ikauk + @ k  + DWk = 0, (2.8) 
where k = 0,1,2,  ... . Ultimately, the problem to be attacked is to solve these 
equations subject to the boundary conditions 

uk = V k  = wk = DWk = 0 at = f 1. (2.9) 

3. Existing theories 
The three theories briefly mentioned in $ 1 may be thought of as presenting different 

kinds of approximate solutions to the problem posed in $2. Before developing a new 
theory, it will be useful background knowledge to discuss more details of these 
theories in line with our formulation. 

3.1. The weakly nonlinear theory of Stuart and Itoh 
In the original theory of Stuart (1962) (see also Itoh 1980), two- and three-dimensional 
waves are assumed to be of the same small order, but we consider here only the simpler 
case, of the infinitesimally small three-dimensional wave. Let us assume the 
fundamental component !PI in (2.3) to be dominant over the others, and denote its 
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complex amplitude by A(t) .  Then the weakly nonlinear solution to (2.4) is written 
in the form m 

Yk = Ak I: IAla"@p(z), (3.1) 
n-0 

m 

= -iA(iac,+ I: A ,  I A ~ ) ,  
dT n-i 

where k = 0, 1,2, ..., @ko) = 0, and @p) for n = 0,1,2,  ... are normalized as 

@\O)(O) = 1, @i")(O) = 0 (n 3 i), (3.3) 

indicating that the amplitude A represents the value of Yl at z = 0. Coefficients of 
the above series in powers of IAI2 are obtainable successively according to the 
well-known procedure of weakly nonlinear theory, which begins with the Orr- 
Sommerfeld eigenvalue problem to determine the complex constant c = cr+ici and 
the complex function @\O)(z), followed by the solution of the inhomogeneous equations 
for @p)(z) and @io)(z).The series solution thus obtained converges for sufficiently small 
values of 1Al.t 

A similar expansion in terms of the amplitude A is applied to the stability problem 
concerned here. We retain only the fundamental components in the Fourier series 
(2.5), neglecting the others as smaller-order terms in 1.41, and put 

where B(t) denotes the complex amplitude of the three-dimensional wave, and the 
associated normalization is made on w1 in a form similar to (3.3). Substitution of these 
into (2.6)-(2.9) and separation of various powers of amplitudes leads to a sequence 
of ordinary differential equations and boundary conditions. From the lowest-order 
terms, we have the homogeneous equation 

{f (D2 -a2-$)2 - ia( U-8) (D2 - a2 -$) + iaUn (3.6) 

which, together with homogeneous boundary conditions, determines the complex 
eigenvalue E and the corresponding eigenfunction wio)(z) as functions of the Reynolds 
number R and the wavenumbers a and /3. The associated velocity components in the 
streamwise and spanwise directions are obtained from solution of the inhomogeneous 
equations with the now-known forcing terms. 

On the other hand, the next-order terms in the amplitude expansion give rise to 
the following inhomogeneous equations of a different type : 

1 
R {- (D2 - a2 - $)2 - ia( U -  E - 2icJ (D2 - a2 -$) + iaU"} wil) 

= {iaD@p)(D2 - a2 -$) - iaDS@bl)- iAl(D2 - a2 -$)} wio), (3.7) 

t The formulation given here works successfully if the growth rate c, is not negative, but may 
possibly break down in the cme of ci negative because the equations for @&") (n 2 1) involve a kind 
of singularity, aa clearly explained by Herbert (1983) (see also Itoh 1974b). However, particular 
solutions of finite equilibrium amplitude can be obtained by using the false-problem method, where 
the condition Re [dA/dt] = 0 is imposed from the beginning (Reynolds & Potter 1967; Itoh 1977). 
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{i (D2 -a2 -$)2 - ia( U -  2c + c") (D2 - a2 -8") + iaU"} @) 

= - 4a2{ @&"(D2 + a2 + p") + D@Lo) D} 2") 
- {2icc@L0)(D2 - a2 -p") D + 3iaD@L0)(D2 - a2-p") 

+ 2iaD2~(,0)D+iaD3@(,0)}dlo)-i~,(D2--a2-$) wp), (3.8) 

which contain the unknown constants A, and i, in the forcing terms. The constant 
A, in (3.7) can be obtained from the well-known solvability condition in the singular 
case of ci = 0, where the inhomogeneous equation has the same differential operator 
as (3.6) and then the forcing terms must be orthogonal to the eigenfunction adjoint 
to wio), while A, in the other case of ci 9 0 is determined through the normalization 
imposed on wp) in a form similar to (3.3). We also find that (3.8) belongs to the latter 
case, because the value of 2c-8' cannot in general coincide with the eigenvalue c^, thus 
indicating no singularity of the cquation. Knowing the numerical values of the 
Landau-type coefficients A, and A,, we can discuss various effects of weak two- 
dimensional waves on the development of three-dimensional disturbances on the 
basis of the amplitude equation (3.5), where AJ indicates the effects through 
two-dimensional distortion of the mean flow, and A, the effects through the second 
harmonic in two-dimensional waves. For the details of such a discussion, see Itoh 
( 1980). 

3.2. Craik's resonant triads 
Following the basic idea of Raetz (1959), Craik (1971) considered three-dimensional 
disturbances consisting of two oblique waves which propagate at equal and opposite 
angles to the flow direction and whose streamwise wavenumber is just half that of 
the two-dimensional wave existing beforehand. He has shown that all three waves, 
when of the same phase velocity, in the downstream direction, construct a resonant 
triad, which leads to rapid growth of the oblique waves. To analyse such a situation, 
we may consider two-dimensional waves with the fundamental wavenumber 2a and 
ignore all components for odd k in (2.3), while only the components of the 
wavenumber a in the Fourier series (2.5) need be taken into account. Then an 
amplitude expansion of the disturbance gives rise to the series solution (3.4) and (3.5) 
with up) = A, = 0 and with A2 replaced by A, which here denotes the complex 
amplitude of the two-dimensional wave !P2. Coefficients in the series are determined 
from solution of (3.6) and (3.8). It should be noted that, since c in this formulation 
denotes the complex phase velocity of the two-dimensional wave with the wavenum- 
ber 2a, the inhomogeneous equationJ3.8) can be of the singular type satisfying the 
condition 2c-8' = 6, under which A, must be determined from the solvability 
condition. 

Putting 
IAI = a, IBI = b, 2 arg (B)-arg (A) = 8, (3.9) 

and separating the modified amplitude equation (3.5) into real and imaginary parts, 
the equations governing the real amplitude b and the phase difference 8 are 

- aei - IA,l a sin (8 - 8,) + O(a2), 
1 db 
b dt 
_ _ -  

d8 
- dt = -2a(6,-c,)-21Alla C O S ( ~ - ~ , ) + O ( ~ ~ ) ,  

(3.10) 

(3.11) 
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where B0 = arg (XI) .  We now assume the amplitude a to be so small that the terms 
of O(a*) may be ignored, and consider Craik's resonant case of 8, = c,. Then the phase 
difference reaches a stable equilibrium at 8 = OO-in, where the growth rate-of b 
becomes maximum. Even in a non-resonant case with the restriction a& - c,I < /All a, 
8 has a stable equilibrium value but the effect of a on the growth of b in  this case 
is smaller than that in the resonant case. Furthermore, if ale,-c,l > lAlla, then 8 
increases or decreases monotonically, so that the second term on the right-hand side 
of (3.10) changes its sign periodically, indicating that the effect of a will be averaged 
out to zero during a period 8. Consequently the most amplified three-dimensional 
wave is the one having the same phase velocity as the two-dimensional wave, and 
its spanwise wavenumber /3 is obtained by solving the relation 

6r(a,  /3, R)  = cr(a ,  R ) ,  (3.12) 

provided that te-mporal variation of a is sufficiently moderate and that the Landau- 
type coefficient A, varies only slightly with /3 in an appropriate range.? It should be 
noted, however, that this kind of resonance can occur in a boundary layer, but not 
in plane Poiseuille flow, because its symmetric velocity profile gives t i e  least stable 
eigenfunctions @ao) and wi0) which are even functions of z, and then A, is found to 
be zero. 

3.3. Stability calculations of Herbert's d e l  
The above two methods are essentially based on weakly nonlinear theory and are 
concerned with a single component in the double Fourier series of three-dimensional 
disturbances. In  contrast, Herbert (1984 a )  considered a two-dimensional unsteady 
flow consisting of laminar Poiseuille flow plus travelling waves with finite amplitude, 
which were numerically obtained by solving the full nonlinear equations with the use 
of iteration, and he investigated its linear stability to a group of three-dimensional 
waves with various 2-Fourier components. 

The most important point in Herbert's method is the assumption that two- 
dimensional waves are in equilibrium. Under this assumption, the Fourier coefficients 
in (2.3) are functions of z only, and with truncation of the series at an appropriate 
term k = K, we can determine Yk (k = 0,1, .  .., K) and the real phase velocity c from 
numerical solution of a finite set of ordinary differential equations. After applying 
similar truncation to (2.5), Herbert seeks a solution to the disturbance equations of 

u,(z, t )  = Ok(z) egt, (3.13) the form 

where s is a complex constant independent of k. Substitution of this into (2.6)-(2.9) 
results in an eigenvalue problem to determine 8 ,  whose real part 8, denotes the 
temporal growth rate of the whole disturbance, while the imaginary part 8, indicates 
the difference in phase velocity from the two-dimensional wave. 

If the two-dimensional waves are assumed to have the fundamental wavenumber 
261, Yk for odd k being equal to zero, as was done in $3.2, it  is then found that the 
disturbance equations for even k do not interact with those for odd k, each set of 
equations constructing an independent problem. The former set describes a three- 

t Craik (1971) expected that A, would take a particularly large value when 8, = cp, because the 
Landau-type coefficient in that caae waa determined subject to the solvability condition, provided 
the two linear growth rates E ,  and ci were both small enough. Even in non-singular cases, however, 
A, can be determined from appropriate normalization conditions such as (3.3) and its value tends 
to the value at the singular point as 2c-8'approaches E (see Itoh 1984). Thus there is no substance 
in the above argument. 
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dimensional disturbance with the same fundamental wavenumber 2a as two- 
dimensional waves, and therefore may be considered as an extension of the 
StuartiItoh formulation, while the latter corresponds to Craik’s resonant theory, 
because its fundamental wavenumber is half that of tihe two-dimensional wave. 
Herbert (1984a, 1985) numerically solved the two kinds of eigenvalue problem for 
plane Poiseuille flow and the Blasius boundary layer, and demonstrated the so-called 
‘ threshold amplitude ’ of two-dimensional waves, above which the disturbances grow 
in time. 

In the theoretical procedure mentioned above, an objection may be addressed to 
the assumption that all the Fourier components of the disturbance have the same 
temporal variation, as indicated in (3.13). This assumption is rational only when 
two-dimensional waves are rigorously in equilibrium, and also when the disturbance 
is so small that the governing equations may be linearized. Otherwise, each Fourier 
component of the disturbance will have different dependence on time owing to 
different interactions with various components, and the above formulation will break 
down. Since the theory, at least in the present form, cannot be extended to a slightly 
non-equilibrium state of two-dimensional waves, we should consider that analyses 
have been made of a mathematical model rather than an approximation to a real 
flow field. Nevertheless, it  is certain that Herbert’s pioneering work has made 
important progress in understanding the physical phenomena concerned here. 

4. Motivation and basic idea 
We have seen that existing theories give a variety of solutions to the disturbance- 

equation system (2.6)-(2.9) subject to different conditions of the two-dimensional 
wave and three-dimensional disturbances. The above references seem to provide 
sufficient theoretical bases for the new analysis given later, although there are other 
attractive or advanced studies relating to the problems of three-dimensionality, for 
instance those by Nayfeh (1981), Craik (1982), Dhanak (1983) and Benney (1984). 
Since the two-dimensional wave is considered to be of fmite magnitude, all the Fourier 
components should be taken into account, at least in principle. Concerning the 
disturbance, however, there is a choice of some particular components dominating 
the whole. It is of course possible to take all the Fourier components, as was done 
by Herbert (1984~). This approach resembles numerical simulations and may be 
useful in describing the quantitative and fully detailed behaviour of the disturbance, 
but seems not to be convenient for revealing the most essential feature of the 
instability mechanism, which will be buried in very complicated interactions among 
all the Fourier components of the basic flow and the disturbance. In  this paper, 
therefore, attention is directed to a single Fourier component of the disturbance, and 
its interaction with related components of the basic flow is investigated. 

For the present purpose of theoretical understanding of important factors affecting 
the main development of instability waves, it  will be helpful to clarify the most 
important outcome of the weakly nonlinear theories based on a series expansion of 
the disturbance in powers of the amplitude of a two-dimensional wave, although this 
approach has the great disadvantage of a small radius of convergence of the series 
solution. In the method of amplitude expansion, the lowest-order approximation to 
the solution is usually given by an eigensolution of the Orr-Sommerfeld equation, 
and higher-order corrections are governed by inhomogeneous equations. The forcing 
terms, originating in quadratic terms of the Navier-Stokes equations, are produced 
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through interactions among various Fourier components in two-dimensional waves 
and disturbances. If a complex frequency of the forcing term coincides with an 
eigenvalue of the corresponding homogeneous equation, the problem becomes 
singular and has a solution only if the forcing term satisfies a solvability condition, 
as mentioned in the previous section. Thus the solvability condition may be 
considered as a mathematical expression of the physical situation of resonance 
between a forcing term and an eigensolution. The analyses of Stuart (1962) and Itoh 
(1980) deal with the case where the forcing terms induced by couplings between the 
zeroth Fourier component of two-dimensional waves and the fundamental of 
three-dimensional disturbances, and between the second harmonic of the waves and 
the fundamental of the disturbances, are in resonance or near resonance with the 
corresponding eigensolution. Also, Craik's (1971) work is concerned with resonance 
between the forcing term due to interaction of the two-dimensional wave with a 
three-dimensional wave of half the streamwise wavenumber and the three- 
dimensional eigensolution. 

Besides these two examples, there will be some resonant or nearly resonant states 
in the sense described above. For instance, the equations for mean-flow distortion 
(zeroth Fourier component) may admit a resonant solution, because their eigensol- 
utions have very small damping factors, that is, of the same order as growth rates 
of Tollmien-Schlichting waves, as frequently pointed out by Davey & Nguyen 
(1971), Itoh (19743), Herbert (1980), Mizushima & Gotoh (1985) and others in the 
framework of two-dimensional problems. In those cases, equations of the form (2.6) 
with k = 0 and fi = 0 play fundamental roles. 

On the other hand, a resonance inherent in three-dimensional problems may 
possibly occur in relation to the additional equation (2.7). In fact, Benney t 
Gustavsson (1981) investigated the equation for k = 1 in detail and accentuated the 
importance of this kind of resonance. In  the present problem, however, the two 
equations (2.6) and (2.7) for k = 1 both have forcing terms that are induced by 
interaction of the wavenumber vectors (-a, p) and (2a,O). Then the forced solution 
of the first equation will behave according to the theory of Stuart or Craik mentioned 
above. In  such a situation, we hesitate to claim that the Benney-Gustavsson 
resonance associated with the second equation is of particular importance. 

At this stage, it may be natural to notice that a new type of mechanism similar 
to the Benney-Gustavsson resonance may act on the mean-flow field in the process 
of three-dimensionalization of instability waves. If only the mean-flow term of the 
disturbance is retained, we have the homogeneous form of (2.6) and an inhomogeneous 
form of (2.7) for k = 0. Thus we can expect that the second equation leads to a simple 
but very important resonance. 

The next section is devoted to pursuing this possibility. 

5. Analysis of the mean-flow field 
Following the above deduction, we assume here that only the mean-flow term with 

k = 0 in the Fourier series (2.5) of the spanwise-periodic three-dimensional 
disturbance is dominant, the other components being negligibly small. This 
assumption allows us to put k = 1 = 0 in (2.6)-(2.9) to yield the simplified equation 
system 
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Eigenfunction Characteristic equation Maximum eigenvalue 

W )  
Even 

Odd 

Even 
w 

Odd 

p tanp = -$ tanh $ 

-- tanp tanh$ 
P B 
cosq = 0 

-- 1 1 
R R 

--($2+7t2) > P o  > --($"@x") 

6 0  = --(p+&?) 1 
R 

6 0  = -1(/?2+n2) 
R 

sinq = 0 

TABLE 1. Eigenvalues of the mean-flow equations 
(p -pR-$ > 0, q -aR-p  > 0 )  

{x(D2-$)-z}uo 1 a = U'w,+ K w , ,  

pvo+Dwo = 0, (5.3) 

uo = w, = Dw, = 0 at z = fl, (5.4) 

where U ( z )  denotes the velocity of steady laminar flow and is given by U = 1-2 in 
the problem of plane Poiseuille flow, while Yo(z,t) is the stream function of the 
mean-flow distortion induced by nonlinear interaction of two-dimensional waves. 
Since the most amplified fundamental Yl in this flow is an even function of z, the 
mean-flow term Yo may be assumed to be an odd function of z (see Stuart 1960). 

It is first necessary to obtain eigensolutions of (5.1) and (5.2) neglecting the forcing 
terms. From the consistency with the continuity equation (5.3), we put the solutions 
in the form 

where a, and b, are arbitrary constants. The procedure for obtaining the eigenvalues 
p and cr is obvious and so the main results are presented in table 1. All eigenvalues 
of the mean-flow equations are real and negative, and the corresponding eigenfunc- 
tions are classified into odd and even functions. In  the stability analysis concerned 
here, only the maximum eigenvalues p, and cr, in the two classes need be taken into 
account. 

Next, we direct our attention to the inhomogeneous equation (5.2) and reveal the 
possibility of resonance there, as mentioned earlier. Although we have two forcing 
terms on the right-hand side, the first term seems not to be important for the present 
purpose, because its time dependence comes from the exponential term g o t  of w, and 
so is always different from that of the eigensolution of u,, as seen in table 1. On the 
other hand, the second forcing term has the possibility of resonance with the 
eigensolution, because Yo as well as wo there will vary with time and, at least under 
the weakly nonlinear approximation, the total dependence is written in an 
exponential function. Thus analysis hereafter will be made on the solution 
corresponding to the second forcing term in (5.2), neglecting the first one. 

On the assumption that the two-dimensional distortion of the mean flow is written 
in the form 

wo(z, t )  = -b0p$(z)  ept, uo(z,t) = ao#(z) cut, (5.5) 

Yo = IA12@,(z) e(s-po)t, (5.6) 
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we have the following equation to solve : 

where IAl denotes the amplitude of Tollmien-Schlichting waves and the real constant 
s represents the total growth rate of the forcing term. The general solution will be 
given by the sum of a particular solution and an infinite sequence of eigensolutions, 
but here we consider a particular situation where the constant s has a slightly positive 
or negative value close to the maximum eigenvalue go. As mentioned earlier, the 
growth rate aci of the Tollmien-Schlichting wave is generally small in magnitude, 
and of the same order as po and go. If we apply the weakly nonlinear theory to the 
solution of (2.4), for simplicity, the growth rate of Yo is found to be given by twice 
that of Yl, indicating that the situation where s = 2aci +po is very close to u, actually 
happens for a small value of aci, that is, for a slowly growing or decaying 
Tollmien-Schlichting wave. Then we may ignore all the decaying eigensolutions 
except the one belonging to go, and write an approximate solution to (5.7) in the form 

where the functionf(z) is required to be orthogonal to the self-adjoint eigenfunction 
q50(z), because it represents the remainder after subtracting the fi0 component from 
the eigenfunction expansion of the particular solution. Substitution of (5.8) into (5.7) 
yields 

(5.9) 
1 {z ( D 2 - P )  - .If = @i ko + A, 9 0 ,  

which has a solution if the Landau-type constant A, is given by 

(5.10) 

It is, of course, allowable to add the 4, eigensolution with an arbitrary coefficient 
to the right-hand side of (5.8), but the additional term decays exponentially with time 
without any significant contribution, and so may be eliminated by imposing an 
artificial condition that the q50 component in the whole solution is negligibly small 
at the initial time t = 0. In fact, the solution (5.8) contains the most important part 
describing the main development of the velocity u,, because the 9, term retained 
there is found to become dominant in a fmite range of time, provided s is sufficiently 
close to a,. To see this, we introduce an amplitude function defined by 

(5.11) 

and investigate its variation with time. 

our sense. Then (5.11) reduces to 
Let us consider first the limiting case of s+vo, which indicates the resonance in 

a(t) = -bolA12/3Aot e'ot, (5.12) 

i 
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FIGURE 1. Behaviour of the amplitude function for various values of s: q(t)  = 
-aoa(t)/(bolAla,9Ao) = ao(e"-euot)/(~-a0). The broken line denotes the case of po = 
-0.4264 x 1W2, uo = -0.1005 x R = 5000 and ,9 = 1.60. 

and shows that the amplitude begins with a = 0 at t = 0, attains the maximum value 

(5.13) 

at the time t = t,,, = - l/g0, and finally decays to zero as t + a. Since the maximum 
amplitude given above is proportional to  the reciprocal of cr,, the most important 
contribution to the disturbance development seems to be made by the eigensolution 
with laol minimum. Thus we choose the case of 4, even in table 1, and put 

1 
Go = --(P"$P), $,(z) = cos+7cz, (5.14) 

Then $, must be the odd eigenfunction belonging to the smaller eigenvalue ofp, given 
in table 1, because an even forcing term is needed to  yield an even solution of (5.7). 
The velocity u, due t o  the even eigenfunction above has the same symmetry about 
the channel centre as the two-dimensional mean flow, and therefore may be con- 
sidered to represent a small spanwise variation in magnitude of the original flow, 
being consistent with various experimental observations. 

Next, we examine the nearly resonant cases, where s is not strictly equal to go but 
Is-cr,,I is sufficiently small. If s is negative, the amplitude function varies with time 
in a way similar to that of the resonant case. If s is zero or has a slightly positive 
value, however, the amplitude does not decay to zero for large time but increases 
monotonically with time. Figure 1 shows variations of a(t)  with time for the finally 
stable (s < 0) ,  neutral (s = 0) and unstable (s > 0) cases. Thus we can draw the 
important conclusion that if s is positive, that  is, if !Po has a growth rate larger than 
-po, an initial three-dimensionality, measured by b, in the present formulation, 
induces an exponential growth of the spanwise-periodic streamwise flow u,. However, 
it should be noticed, from considering the more practical problem of spatial 
dependence, that  what is really important for our present purpose is not the final 
state of infinite time but the maximum value that the amplitude can attain during 

R 
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FIQWE 2. Variation of a,,,, with /3 for the caiw of R = 5000 and a = 1.2. 

a finite time. Even in the case where s is slightly negative (including the resonant 
case), the maximum of a(t)/(b,lAIz) is numerically very large because of the resonant 
or nearly resonant state. When b,lAI2 is very large, therefore, a(t) can grow near the 
maximum point to a magnitude sufficiently large for its nonlinear effects to keep the 
flow field three-dimensional. Thus we may use amax given by (5.13) as a measure of 
growth of three-dimensionality, without specification of a value of 8 .  It may be noted 
here that the asymptotic amplitude for large time of the neutrally stable solution with 
s = 0 in figure 1 differs from amax only by the constant factor e = 2.718 ... . 

For further discussion on the amplitude function, we need to know values of the 
Landau-type constant A,, which can be obtained by solving (5.9) with the author’s 
(Itoh 1974a) numerical method of solution. The two-dimensional mean flow of the 
form Yo = IAIz @,(z) is obtained from the weakly nonlinear method. In (2.4), we put 
k = a/at = 0, substitute A@\O)(z) and its complex conjugate into Yl and Y-,  and 
neglect other Fourier components on the right-hand side. For definition of the 
amplitude A and of b,, the eigenfunctions of the Odommerfe ld  equation and (5.1) 
are normalized as @p)(O) = 1 and @,(O)  = 1, Numerical results thus obtained indicate 
that A, is not sensitive to variation of the spanwise wavenumber B, and therefore the 
dependence of amax on B is mainly due to the /3/ao term in (5.13). Actually the curve 
of amax/(b,lAJ2) plotted against /3 for a fixed value of the Reynolds number has a 
maximum near B=$n, as shown in figure2. This peak, which represents an 
amplification factor of the most unstable three-dimensional disturbance, is not very 
sharp but seems a t  least to suggest the existence of a preferred range of spanwise 
wavenumber in the process of three-dimensionalization of Tollmien-Schlichting 
waves. The main features of this figure seem to be unchanged for quite general cases 
with different values of the Reynolds number R and the two-dimensional wave- 
number a, because the fact that A, varies only slightly with /3 will normally be true 
in those cases. 

It should be emphmized again that we can understand, from values of a/b,, how 
much the three-dimensional components originally included in the mean flow are 
amplified through the above mechanism of resonance under the existence of 
two-dimensional waves. Figure 2 indicates that the amplification factor remains of 
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order unity if the amplitude of the Tollmien-Schlichting waves is less than 2 %, but 
that the factor can become one order of magnitude greater than unity for an 
amplitude above 4 %. 

Finally a remark should be made upon the first forcing term in (5.2). Although 
neglected in the preceding analysis, this term is much larger in magnitude than the 
second forcing term, and may also be considered close to resonance, because lpol and 
laol are both numerically small. Indeed we have a nearly resonant solution, whose 
Landau-type constant To is obtained by replacing @; with U' in (5.10) and found to 
be much smaller in magnitude than A,; for instance, = -0.3059 and A, = - 10.38 
for the case of R = 5000, a = 1.20 and /I = 1.60, indicating that the two forced 
solutions may be considered roughly of a comparable order when the amplitude of 
Tollmien-Schlichting waves is larger than 4 % or so. Since the first forcing term has 
a negative growth rate a little away from the resonance, the corresponding solution 
attains its maximum in a rather short time and then decays slowly (see figure 1). 
Therefore the total behaviour of u, will be dominated in the earlier stage by the first 
solution, but later by the solution corresponding to the second forcing term if the 
growth rate s is positive or near zero. It may also be noted that the first solution 
does not involve the Tollmien-Schlichting waves and so describes the behaviour of 
a small three-dimensionality introduced into a steady laminar flow. Its slow damping 
for large time may explain the experimental difficulty of complete elimination of 
minute spanwise variation in the basic flow encountered by Nishioka & Asai (1985). 

6. Concluding remarks 
The analysis given in the previous section has predicted a strong possibility that, 

when a certain magnitude of TollmienSchlichting waves exists, three-dimensional 
distortion with a spanwise periodicity is produced in the mean-flow field. It is 
naturally desirable to directly compare this prediction with experiments, but no 
appropriate experimental data are available, because detailed measurement of the 
mean-flow field is very difficult when quite large travelling waves exist. Fortunately, 
however, the mean-flow distortion is considered to grow rather rapidly, becoming so 
large that its interaction with the existing two-dimqnsional waves will become 
substantial. This coupling yields three-dimensional travelling waves with the same 
streamwise wavenumber as that of Tollmien-Schlichting waves, and with the same 
spanwise wavenumber as that of the mean-flow distortion, resulting in the peak- 
valley splitting observed by Klebanoff et al. (1962) in the famous experiments on the 
flat-plate boundary layer. Although the mean-flow distortion varies with time in a 
manner slightly different from an exponential function, as seen previously, we simply 
apply the equation system (2.6)-(2.9) to calculate the velocity distribution of the 
resulting three-dimensional waves. Putting k = 1, a/at = 0, and substituting @i0)(z) 
and $,(z) into !Pl and uo respectively, on the right-hand side, with neglect of other 
Fourier components, leads to a set of simplified equations, which can be solved 
numerically. The velocity and phase distributions of u1 thus obtained are compared 
with those of the two-dimensional solution Ul = D@P)(z) in figure 3. The main 
differences are in the location of the maximum amplitude and in the phase shift in 
the neighbourhood of the wall. These features of the distributions of the velocity and 
phase agree very well with the experimental results of Nishioka & Asai (1985, figures 6 
and 7) .  

As mentioned earlier, there are two types of three-dimensional development of 
Tollmien-Schlichting waves, one being the formation of Klebanoffs peak-valley 
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FIQURE 3. (a )  Velocity and (b)  phme distributions of the three-dimensional travelling wave (-) 
and the Tollmien-Schlichting wave (---). R = 6000, a = 1.2 and B = 1.6. 

splitting, the other of the staggered type theoretically predicted by Craik (1971). 
Stability calculations made by Herbert (1984a, 1985) have clearly indicated that the 
unsteady flow consisting of a laminar flow plus Tollmien-Schlichting waves with 
finite amplitude is unstable to both types of three-dimensional disturbance. In  
contrast with the staggered type caused by Craik’s resonant triads, however, the 
mechanics leading to the peak-valley splitting has awaited satisfactory explanation 
for a long time, although some attempts were made to this end by Stuart (1962) and 
Itoh (1980). It may therefore be expected that an advance in understanding of the 
phenomena will be stimulated by the mechanics proposed in the present paper, with 
accentuation of the importance of the mean-flow field. 

In  this paper, the temporally dependent approach has been used only for 
mathematical simplicity. However, essential features in the analysis would be similar 
if the roles of the time t and the streamwise distance 2 were exchanged to give 
preference to the spatially dependent approach, which might be convenient for 
comparison with experimental observations. It is also for mathematical simplicity 
that plane Poiseuille flow was chosen as the basic laminar flow. Some modifications 
will be necessary for application of the theory to the problem of boundary-layer flows 
because of the weak but important effects of non-parallelism on the mean-flow field 
(Itoh 1974c, 1984). 

The author wishes to express his thanks to Professor Itiro Tani, and DrsM. 
Nishioka and M. Asai for many valuable discussions on the topic of this paper. 
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